ABSTRACT

The advent of cloud computing, data owners are motivated to outsource their complex data management systems from local sites to commercial public cloud for great flexibility and economic savings. But for protecting data privacy, sensitive data has to be encrypted before outsourcing, which obsoletes traditional data utilization based on plaintext keyword search. Thus, enabling an encrypted cloud data search service is of paramount importance. Considering the large number of data users and documents in cloud, it is crucial for the search service to allow multi-keyword query and provide result similarity ranking to meet the effective data retrieval need. Related works on searchable encryption focus on single keyword search or Boolean keyword search, and rarely differentiate the search results. In this paper, for the first time, we define and solve the challenging problem of privacy-preserving multi-keyword ranked search over encrypted cloud data (MRSE), and establish a set of strict privacy requirements for such a secure cloud data utilization system to become a reality. Among various multi-keyword semantics, we choose the efficient principle of “coordinate matching”, i.e., as many matches as possible, to capture the similarity between search query and data documents, and further use “inner product similarity” to quantitatively formalize such principle for similarity measurement. We first propose a basic MRSE scheme using secure inner product computation, and then significantly improve it to meet different privacy requirements in two levels of threat models. Thorough analysis investigating privacy and efficiency guarantees of proposed schemes is given, and experiments on the real-world dataset further show proposed schemes indeed introduce low overhead on computation and communication.
Existing System:

The existing system is impractical in our scenario for two reasons. First, it may have the undesirable effect of changing a user’s existing query groups, potentially undoing the user’s own manual efforts in organizing her history. Second, it involves a high computational cost, since we would have to repeat a large number of query group similarity computations for every new query.

Disadvantage:
1) To perform query grouping in a dynamic fashion.
2) To ensure good performance while avoiding disruption of existing user-defined query groups.

Proposed System:

The proposed system to investigate how signals from search logs such as query reformulations and clicks can be used together to determine the relevance among query groups. We study two potential ways of using clicks in order to enhance this process by fusing the query reformulation graph and the query click graph into a single graph that we refer to as the query fusion graph, and by expanding the query set when computing relevance to also include other queries with similar clicked URLs.

Advantage:
1. To focus on evaluating the effectiveness of the proposed algorithms in capturing query relevance.

2. Relevance Measure

3. Online query grouping process

4. Similarity function

MODULE

1. Query Group

2. Search history

3. Query Relevance and Search logs

4. Dynamic Query Grouping
Query Group:

We need a relevance measure that is robust enough to identify similar query groups beyond the approaches that simply rely on the textual content of queries or time interval between them. Our approach makes use of search logs in order to determine the relevance between query groups more effectively. In fact, the search history of a large number of users contains signals regarding query relevance, such as which queries tend to be issued closely together (query reformulations), and which queries tend to lead to clicks on similar URLs (query clicks). Such signals are user-generated and are likely to be more robust, especially when considered at scale. We suggest measuring the relevance between query groups by exploiting the query logs and the click logs simultaneously.

Search History:

We study the problem of organizing a user’s search history into a set of query groups in an automated and dynamic fashion. Each query group is a collection of queries by the same user that are relevant to each other around a common informational need. These query groups are dynamically updated as the user issues new queries, and new query groups may be created over time.

Query Relevance and Search logs:

We now develop the machinery to define the query relevance based on Web search logs. Our measure of relevance is aimed at capturing two important properties of relevant queries, namely:

a) Queries that frequently appear together as reformulations and

b) Queries that have induced the users to click on similar sets of pages.

We start our discussion by introducing three search behavior graphs that capture the aforementioned properties. Following that, we show how we can use these graphs to compute query relevance and how we can incorporate the clicks following a user’s query in order to enhance our relevance metric.

Dynamic Query Grouping:

One approach to the identification of query groups is to first treat every query in a user’s history as a singleton query group, and then merge these singleton query groups in an iterative fashion in a k-means or agglomerative way.

However, this is impractical in our scenario for two reasons.

1. The existing query groups, potentially doing the user’s own manual efforts in organizing her history.

2. It involves a high computational cost, since we would have to repeat a large number of query group similarity computations for every new query.

Hardware Requirements:

· System

: Pentium IV 2.4 GHz.

· Hard Disk

: 80 GB.

· Floppy Drive
: 1.44 Mb.

· Monitor

: 15’ VGA Colour.

· Mouse

: Optical Mouse
· RAM

: 512 MB.
Software Requirements:

· Operating system
: Windows XP.

· Coding Language
: ASP.Net with C# SP1
· Data Base

: SQL Server 2005

